metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Michito Shiotsuka,^a* Hayato Ogasawara,^b Mitsuhiro Ito^c and Satoru Onaka^b

^aDepartment of Socio Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan, ^bDepartment of Environmental Technology, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan, and ^cVenture Business Laboratory, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya, Aichi 466-8555, Japan

Correspondence e-mail: michito@nitech.ac.jp

Key indicators

Single-crystal X-ray study T = 120 K Mean σ (C–C) = 0.011 Å Disorder in solvent or counterion R factor = 0.099 wR factor = 0.189 Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(2,2'-bipyridine)(3,8-diethynyl-1,10-phenanthroline)ruthenium(II) bis(hexafluorophosphate) diethyl ether disolvate

The asymmetric unit of the title compound, $[Ru(C_{10}H_8N_2)_2 (C_{16}H_8N_2)](PF_6)_2 \cdot 2Et_2O$ or $[Ru(bipy)_2(dephen)](PF_6)_2 \cdot 2Et_2O$, where bipy is 2,2'-bipyridine and dephen is 3,8-diethynyl-1,10-phenanthroline, contains a monomeric $[Ru(bipy)_2(dephen)]$ cation, two hexafluorophosphate anions, and two molecules of diethyl ether. The ruthenium(II) ion is in a distorted octahedral environment, coordinated by two bipy and one dephen ligands. Weak intermolecular $C-H\cdots$ F hydrogen bonds are observed in the crystal structure.

Comment

There has been increasing interest in the design of multinuclear systems built up from photo-active ruthenium(II)polypyridyl complexes as a result of the development of photonic and opto-electronic devices. In this regard, numerous substituted 2,2'-bipyridine and 1,10-phenanthroline compounds have been synthesized and used as multidentate ligands. Recently, 3,8-diethynyl-1,10-phenanthroline (dephen) and its derivatives have become popular in the field of luminescent materials (Schmittel et al., 2005; Ziessel, Grosshenny et al., 2004). To the best of our knowledge, no example of the molecular structure of a ruthenium(II)-polypyridyl complex containing the dephen ligand has been reported, although this type of ruthenium-polypyridyl complex has been widely used over the past decade as the starting material in photophysical and electrochemical studies of new photoactive supramolecular compounds (Ulrich & Ziessel, 2004; Shiotsuka et al., 2002; Tzalis & Tor, 1997). Here we report the synthesis and the crystal structure of the title new ruthenium(II)-polypyridyl complex, (I).

The asymmetric unit of (I) consists of an $[Ru(bipy)_2(de-phen)]$ cation (Fig. 1) (bipy is 2,2'-bipyridine and dephen is 3,8-diethynyl-1,10-phenanthroline), two hexafluorophosphate anions and two diethyl ether solvent molecules. The coordination environment around the Ru^{II} atom is distorted octahedral, with *trans* angles at the Ru^{II} site ranging from 171.1 (2)

© 2006 International Union of Crystallography All rights reserved Received 12 May 2006 Accepted 23 May 2006

23098 measured reflections 10281 independent reflections 8528 reflections with $I > 2\sigma(I)$

 $\begin{aligned} R_{\rm int} &= 0.065\\ \theta_{\rm max} &= 27.5^\circ \end{aligned}$

The structure of the cation of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

to 173.7 (2)° (Table 1). The average Ru–N bond length [2.061 (5) Å] involving the bipyridine ligands is shorter than that [2.071 (5) Å] with phenanthroline (Table 1). The ligand bite angle, N–Ru–N, of bipyridine [78.6 (2)°] is smaller than that of phenanthroline [80.26 (19)°]. These tendencies are consistent with the results reported for [Ru(bipy)₃](PF₆)₂ [2.056 (2) Å and 78.7 (1)°; Rillema *et al.*, 1992] and [Ru(phen)₃](PF₆)₂ [2.063 (4) Å and 79.8 (2)°; Breu & Stoll, 1996; phen = 1,10-phenanthroline].

Weak intermolecular C-H···F hydrogen bonds (Table 2) stabilize the crystal packing along with van der Waals forces.

Experimental

3,8-Diethynyl-1,10-phenanthroline was synthesized according to the method of Ziessel & Stroh (2004). The ruthenium complex RuCl₂-(bipy)₂ was prepared according to the method of Sullivan *et al.* (1978). Dephen (460 mg, 2.02 mmol) and RuCl₂(bipy)₂ (1092 mg, 2.10 mmol) were heated at 363 K in a mixture of ethanol (200 ml) and water (20 ml) for 12 h. After filtration of the solution, the filtrate was concentrated and added to water (70 ml) containing NH₄PF₆ (1980 mg, 12.2 mmol). A red precipitate was collected by suction filtration, washed with water (50 ml) and diethyl ether (50 ml), and dried at 303 K under vacuum for 12 h. Orange crystals suitable for X-ray structure investigations were obtained from a solution in acetonitrile–diethyl ether (1:1).

Crystal data

$[Ru(C_{10}H_8N_2)_2(C_{16}H_8N_2)](PF_6)_2$	$\gamma = 80.166 \ (11)^{\circ}$
$2C_4H_{10}O$	V = 2323.4 (8) Å ³
$M_r = 1079.86$	Z = 2
Triclinic, P1	$D_x = 1.544 \text{ Mg m}^{-3}$
a = 11.617 (2) Å	Mo $K\alpha$ radiation
b = 14.385 (3) Å	$\mu = 0.50 \text{ mm}^{-1}$
c = 14.388 (3) Å	T = 120 (2) K
$\alpha = 84.413 \ (12)^{\circ}$	Plate, orange
$\beta = 79.423 (11)^{\circ}$	$0.31 \times 0.22 \times 0.07 \text{ mm}$

Rigaku Mercury CCD	
diffractometer	
w scans	
Absorption correction: multi-scan	
(Spek, 2003)	
$T_{\min} = 0.861, T_{\max} = 0.966$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0264P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.099$	+ 19.3492 <i>P</i>]
$vR(F^2) = 0.189$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.19	$(\Delta/\sigma)_{\rm max} < 0.001$
0281 reflections	$\Delta \rho_{\rm max} = 0.80 \ {\rm e} \ {\rm \AA}^{-3}$
545 parameters	$\Delta \rho_{\rm min} = -1.02 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

 Table 1

 Selected geometric parameters (Å, °).

N1-Ru1	2.075 (5)	N4-Ru1	2.062 (5)
N2-Ru1	2.066 (5)	N5-Ru1	2.060 (5)
N3-Ru1	2.057 (5)	N6-Ru1	2.063 (5)
N3-Ru1-N5	97.0 (2)	N4-Ru1-N2	171.1 (2)
N3-Ru1-N4	78.6 (2)	N6-Ru1-N2	89.9 (2)
N5-Ru1-N4	92.98 (19)	N3-Ru1-N1	87.0 (2)
N3-Ru1-N6	173.7 (2)	N5-Ru1-N1	173.1 (2)
N5-Ru1-N6	78.6 (2)	N4-Ru1-N1	93.36 (19)
N4-Ru1-N6	97.15 (19)	N6-Ru1-N1	97.9 (2)
N3-Ru1-N2	94.8 (2)	N2-Ru1-N1	80.26 (19)
N5-Ru1-N2	93.73 (19)		

Table 2		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C1-H1···F21	0.95	2.46	3.204 (7)	135
$C5-H5\cdots F2$	0.95	2.43	3.312 (8)	154
$C14-H14\cdots F4A^{i}$	0.95	2.37	3.29 (3)	163
$C14 - H14 \cdots F4B^{i}$	0.95	2.21	3.161 (19)	174
$C16-H16\cdots F5A^{ii}$	0.95	2.19	3.143 (18)	175
$C16-H16\cdots F5B^{ii}$	0.95	2.39	3.30 (2)	161
$C19-H19\cdots F3B^{iii}$	0.95	2.36	3.10 (2)	134
$C20-H20\cdots F25^{iv}$	0.95	2.39	3.336 (8)	177
$C23-H23\cdots F25^{iv}$	0.95	2.43	3.384 (8)	178
$C33-H33\cdots F24^{v}$	0.95	2.38	3.334 (8)	177
$C34-H34\cdots F6A^{vi}$	0.95	2.33	3.16 (3)	145
$C34-H34\cdots F6B^{vi}$	0.95	2.40	3.056 (17)	126
Symmetry codes:	(i) $-x + 1$,	-y + 1, -z + 1	; (ii) $-x, -y$	-z + 1; (iii)
-x, -y + 1, -z + 1; -x + 1, -y, -z + 1.	(1V) $-x +$	1, -y + 1, -z;	(v) $-x+1$,	-y, -z; (vi)

All H atoms were included in calculated positions, with C–H = 0.95 or 0.98 Å, and treated as riding with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. Four F atoms in one of the two hexafluorophosphate anions are rotationally disordered (the approximate axis of rotation is F1–P2–F2) between two positions with the FnA–P2–FnB (n = 3-6) angles in the range 23.6–30.4° and refined occupancies of 0.51 (5) and 0.49 (5). The deepest hole is located 0.92 Å from atom Ru1.

Data collection: *CrystalClear* (Rigaku, 2000); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics:

metal-organic papers

ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Thanks are due to the Research Centre for Molecular-Scale Nanoscience, Institute for Molecular Science, for assistance with the X-ray crystal structure determination.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Breu, J. & Stoll, A. J. (1996). Acta Cryst. C52, 1174-1177.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Rillema, D. P., Jones, D. S., Woods, C. & Levy, H. A. (1992). Inorg. Chem. 31, 2935–2938.
- Schmittel, M., Michel, C. & Wiegrefe, A. (2005). Synthesis, 3, 367-373.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Shiotsuka, M., Yamamoto, Y., Okuno, S., Kitou, M., Nozaki, K. & Onaka, S. (2002). Chem. Commun. pp. 590–591.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

- Sullivan, B. P., Salmon, D. J. & Meyer, T. J. (1978). Inorg. Chem. 17, 3334-3341.
- Tzalis, D. & Tor, Y. (1997). J. Am. Chem. Soc. 119, 852-853.
- Ulrich, G. & Ziessel, R. (2004). J. Org. Chem. 69, 2070-2083.
- Ziessel, R., Grosshenny, V., Hissler, M. & Stroh, C. (2004). Inorg. Chem. 43, 4262–4271.
- Ziessel, R. & Stroh, C. (2004). Tetrahedron Lett. 45, 4051-4055.